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Abstract. The convex hull of any subset o f  vertices of an n-dimensional hypercube contains 
no other vertex of the hypercube. This result permits the application of some theorems of 
n-dimensional geometry lo digital reed-forward neural networks. Also. the construction Of 
the convex hull is proposed as an alternative to more traditional learning algorithms. Some 
preliminary simulation results are reponed. 

1. Introduction 

Feed-forward neural networks are simple [ l ]  but nevertheless powerful and can 
calculate any function of their inputs given enough ‘hidden’ neurons (see [2] and [3] 
for example). 

Here we consider feed-forward networks with the following characteristics: 
( i )  linear threshold digital neurons, i.e. hidden neurons hi are function of inputs 

i, via the classical law: 

(ii) one hidden layer; 
(iii) one output neuron; 
(iv) learning done by presentation of examples. 
This kind of network is compietely described by the network topology and by the 

set of weights (and threshold) of each neuron and has been extensively studied by 
~ Minsky ~~ and Papert [4] in the case of nets with no hidden layers. 

Such networks can typically synthesize an n-variable Boolean function: given a 
subset of the possible 2” inputs, the examples, one is required to find a network that 
answers 1 when presented with one of these cases and 0 otherwise. Very often this 
problem is solved by trying to minimize the number of neurons of the hidden layer 
or trying to maximize the information content of the solution network. 

An important offspring is that, usually, the net will answer 1 not only to the examples 
but also to a certain number of other cases. These departures from the ‘exact’ solution 
are (rather vaguely) associated with the process of ‘generalization’ in learning because 
there is the hope that the net answers are done on the basis of some reasonable criteria 
and that the generalization is meaningful: this is also one of the most fascinating 
features of the whole process. Nevertheless it is clear that this process is not controlled 
and that generalizing properties can be quite ‘surprising’. Cover [ 5 ]  and more recently 
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Carnevali and Patarnello [61 addressed the problem quantitatively. They showed that, 
starting from probabilistic considerations, one can estimate the probability of a mean- 
ingful generalization. It appears quantitatively that, in all non-trivial cases, the net 
cannot guess what it has not been told explicitly. These considerations suggest to us 
a net without generalization properties or with these properties added and controlled 
at will. 

A word of caution also about the procedure for the production of the solution 
network: usually at the start one does not even know how many hidden neurons are 
needed (not to mention their weights) and the search for a viable configuration is 
combinatorially difficult. This is the source of the known problems of local minima in 
the back-propagation algorithm [ I ]  where one tries to minimize the number of errors 
produced by a fixed number of hidden neurons by changing their weights. 

We take here a different stand: we think that at present the problem of the 
optimization of the network has a low priority while there are more important things 
to work on: 

(i) one should be able to find a solution with no problem of iterative convergence; 
(i i)  in most real world problems the patterns are strongly correlated with each 

other: one should take into account this important property; 
(iii) generalization properties are very important but usually they are not controlled 

at all; moreover quantitative results on this aspect (e.g. [SI and 161) are for random 
problems and so are not directly applicable to real world problems where patterns are 
correlated. A good solution should be able to somehow control the generalization 
property of the network. 

Trying to take into account all of this we started to consider the linear space 
described by the input neurons. The states of the n input neurons may be taken to be 
the coordinates of an n-dimensional linear space: in this case every possible configur- 
ation of the input neurons corresponds to a vertex of an n-dimensional hypercube of 
side 1. The set of ‘acceptable’ input patterns is thus a subset of the family of hypercube 
vertices. 

The set of weights and the threshold associated to a given hidden neuron define a 
hyperplane in this n-space (see (1)):  the hyperplane partitions space into two half- 
spaces, and the hidden-neuron outputs 1 if the input configuration is in the ’positive’ 
half-space and 0 otherwise (this labelling is obviously arbitrary). 

The typical problem is to synthesize a network that is capable of reproducing a 
given set of examples. The learning process thus yields a set of hyperplanes that isolate 
at least the given examples. Obviously one hyperplane will suffice if and only if the 
given sets are linearly separable: in this case the perceptron algorithm of Rosenblatt 
[7] will recursively adjust its only hyperplane position until separation is achieved. In 
other cases more than one hyperplane will be needed but their number is a priori 
unknown?. For a false two-dimensional example (points are not vertices of a square) 
see left part of figure 1. 

The starting point for our approach originates from the observation that if the 
patterns are clustered in space (a reasonable hypothesis for real world problems) then 
one can try to isolate this region of space with an hypersphere or with its approximation 
given by a set of hyperplanes. 

M Budinich and E Milorti 

t The tiling algorithm proposed by Mezard and Nadal [Z ]  addresses the problem of the unknown number 
of hyperplanes needed to separate the sets: i t  continues lo add neurons (hyperplanes) in several layers until 
an exact solution is found. 



Feed-forward neural networks: a geometrical percpecfive 

p 
883 

Figure 1. W Good cases; +bad E B S C S .  ( a )  A ‘standard‘ solution: uncontrolled hyperplanes 
position; uncontrolled generalization: small number of hyperplanes. ( b )  The convex hull 
solution: fixed hyperplanes position: no generalization introduced; absolute minimal 
volume but not minimal number of hyperplanes. 

The smallest convex figure, delimited by hyperplanes, that contains all of the given 
points is the ‘convex hull’ [8] that by definition is the minimal volume convex polytope 
that contains all the given points and that can be also thought of as the intersection 
of the half-spaces defined by its facets. 

It is simple to prove that the convex hull of any subset of hypercube vertices do 
not contain any other hypercube vertex: this guarantees that all ‘good’ points remain 
within the convex hull while all the other points remain out (see figure 1). We will 
see, starting from here, how we can easily build a one-hidden-layer feed-forward net 
that answers 1 to all ‘good‘ points and 0 to all others thereby producing no uncontrolled 
generalization. 

In what follows we prove this simple proposition that allows us to use the large 
body of knowledge on convex polytopes to draw some other interesting conclusions. 

2. Convexity and some of its consequences 

We consider the set H of the 2” vertices of an n-dimensional hypercube and its subset 
{xs} formed with the vertices we want to select: we also define the complementary set 
{x,}=H-IxJ. 

Theorem. The convex hull of any subset {XJ of vertices of an n-dimensional hypercube 
contains no other vertices of the hypercube. 

Proof: The hypercube itself and a half-space are both convex sets. Each point x, of 
the complementary set can be cut off the hypercube by intersecting it with a half-spacet. 
Since the intersection of two convex sets is a convex set at each pass we produce a 
new convex set. At the end of the process we are left with a convex set with no elements 
of the complementary set, i.e. we have built a convex set S such that S ~ { X , )  and 
{xJ n S = 0. This proves that there is a convex set that contains all and only the initial 
vertices: but Conv(x,} the convex hull of {xs} is, by definition, the intersection of all 

U the convex sets that contain {xJ, therefore {xc} n Conv{x,} = 0. 

t Without lops of generality one can choose the origin (0.0,. . . , O )  as the vcnex to be discarded. If we let 
x , .  .... x,, bethecoordinates,thenihehalf-spaceI,+x,+ ...+ x , , ~ A  ( O < A ~ I ) r e l e c t s a l l t h e o t h e r v e r t i c e s  
o f t h e  hypercube while discarding the origin. 
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For all its simplicity, this theorem is not obvious: e.g. figure 12.3 on page 195 of 
the last edition of Minsky and Papert’s famous book [4] (where the sets are shown to 
be non-convex) is somehow misleading. 

Corollary. The selected vertices {xJ are the extreme points of Conv(x,]. 
In fact if X ~ E  {xJ, it can be cut off the convex hull by a half-space as in the previous 

proof, while leaving all the other points: then x, cannot be a convex combination of 
the other points, therefore xo is an extreme point?. Moreover if the convex hull had 
any other extreme point, it could likewise be cut off, yielding another, ‘smaller’, convex 
set, against the hypothesis that the original set is the convex hull. 

Since the convex hull is also the intersection of the half-spaces determined by its 
supporting hyperplanes, we see immediately how to build a feed-forward neural 
network with the property of selecting all and only the given examples. This network 
has just one hidden layer and each of its hidden neurons is associated to one of the 
supporting hyperplanes (facets) of the convex hull. The output layer performs the 
logical AND of all the neurons of the hidden layer. The output of this net is 1 if and 
only if all the hidden neurons of the layer output 1 i.e. if and only if the input state 
is in the convex hull defined by the examples$. The network so constructed can store 
any number m (1 S m S 2”)  of patterns desired. 

A relevant question concerns the number of facets N f  (i.e. of hidden neurons) of 
the convex hull of m points (examples) in n-dimensional space. By the McMullen 
upper bound theorem [9] the maximum value Nr can have is§: 

m m - n / 2  
N r S -  ( n  even) 

m - n / 2 (  n / 2  ) 
m 3 n + l  

This number of facets is reached when the m points in n-dimensional space are in 
general position and form a ‘cyclic polytope’ that has the maximum number of, facets 
a convex polytope can have [8]. 

A set of m (with m 2 n + 1) n-dimensional points are said to be in general position 
when no subset of n + 1 points lie on a (n - I)-dimensional hyperplane. 

In our case we are dealing with hypercube vertices where not any choice of 2n 
points can be in general position. This makes our case very much simpler than a cyclic 
polytope and we expect a number of facets substantially smaller than the upper bound 
quoted here. 

As we mentioned in the introduction, simple perceptrons must deal with the linear 
separability of disjoint sets of ‘positive’ and ‘negative’ examples: as we have seen they 

t Let x , ,  , . . , xk be k n-dimensional points: then Alx3 +. , .+ A,,x,, with A ,  +. . . t A,, =I and A ,  3 0, is a Convex 
camhination of there points (see, e.g., [SI). A convex combination of extreme points in a convex ret spans 
the whole set. 
*The complementary network (i.e. that with opposite output function) can be easily built starting from the 
convex hull of the complement of our initial set. The two nets are logically equivalent and one can choose 
the one using the less hidden neurons (i.e. the convex hull with less facets). 
5 These formulae have the asymptotic value N, = O ( m l ” / ’ J /  [n/ZJ !) when m x n x 1. These formulae could 
a h  be used to estimate a lower bound on the number m of patterns a given convex hull with N, facets 
can store. Anyhow, as far the upper bound case, we expect this lower hound not lo he tight at all. 
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can both be enclosed in their convex hulls. That the sets of examples are almost never 
linearly separable can be seen from a theorem of Fiiredi [IO] who proved that the 
probability that the hypercube centre belongs to the interior of convex hull of a random 
subset of m hypercube vertices in n-dimensional space is [ 1 -0( I/&)] when n >> 1 
and m > 2n. 

When translated to our present context, this means that given any two sets of more 
than 2 n  examplesi their convex hulls contain a common p i n !  with probability 
approaching 1 for large n, therefore the two sets are almost always linearly inseparable, 
i.e. a simple perceptron with n inputs has almost always-for sufficiently large example 
sets-a bad performance. 

This result is different from the classical one of Cover [ 5 ]  (that states that 2 n  
random points in general position are almost never linearly separable) in the sense 
that here the strong request that the m points be in general position is not necessary: 
our points are vertices of an hypercube: a situation much more natural for neural 
network problems. This result is supported by the observation that on average one 
needs more hyperplanes to separate sets of points if they are not in general position 
than if they are [ 1 I]. 

3. Practical considerations 

We have seen that constructing the convex hull ’replaces learning’, but how good is 
all this for practical purposes? 

The computation of the convex hull of a set of m points in n-dimensional space 
is a well known problem for which there are  well studied, exact, algorithms described 
at length in the books by Edelsbrunner [12] and Preparata and Shamos [13]. The 
algorithm we have chosen for our numerical simulation requires, in the worst cases 
(cyclic polytopes), a time of the order O(m L n i 2 J + ’ )  and a memory of the same order 
of magnitude. This algorithm works in incremental mode: it  starts by building the 
convex hull of two points and then it  adds the other points one at the time recalculating 
the updated convex hull at each step. This structure seems to fit quite nicely with the 
needs of neural networks learning. 

In practice, having fixed at n the input size of the network (the output size is fixed 
at 1 in our discussion), one feeds one ai  a time the m examples to the algorithm that 
at each step returns the Nr hyperplane equations that define the convex hull of all 
points supplied up to that moment. Given this structure one needs to give only the 
positive examples. 

The construction of the convex hull is a solution to the problem of learning: if one 
compares it to more traditional learning algorithms one notices that: 

(i) it is free from problems of convergence; 
(ii) it adapts the size of the network to the problem and it does not get stuck into 

(iii) every example has to be given only once; 
(iv) it generates an exact (in the sense described before) solution that is a clear, 

intuitive, geometrical figure of simple interpretation, though it is not necessarily the 
most ‘economical’; 

(v) it  does not produce any unknown, random, generalization but given the simple 
geometrical structure of the solution it allows to add known, understandable, generaliz- 
ation properties. 

local minima; 
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We remark that the ‘training time’ for the convex hull algorithm is at worst of the 
order O(mL”’”+’) (see [12] and [13] for a proof): this is an upper bound, but already 
better than the performance of many ‘biologically motivated’ algorithms that scale like 
O ( [ c ( n ) ] “ ‘ )  ( c ( n )  is some parameter which depends on the network architecture, see 
e.g. [14]). 

After having built the convex hull one has a solution which recognizes all and only 
the given examples, thus no generalization is produced. Several ways to introduce this 
property in a controlled fashion now can be derived. The most obvious is to ‘inflate’ 
the convex hull by shifting the hyperplanes of the facets along their orthogonal direction 
and far from the interior of the convex hull. This and other possibilities are at present 
under study. 

4. Numerical simulations 

We performed a Monte Carlo simulation choosing randomly m patterns among the 
vertices of the n-dimensional hypercube. The number of facets of their convex hull 
was computed with the standard algorithm and the procedure was repeated several 
times for each value of m and subsequently the average number of facets was calculated. 

Figure 2 shows the average number of hidden neurons for a set with n = 8 (i.e. a 
network with 8 inputs), with m varying between 9 and 255. The continuous curve on 
the left is the McMullen upper bound. 

Number Of  e x o m p k S  m 

Figure 2. Number of convex-hull facets lor random examples (0 )  and for correlated 
examples (+), lor a network with n inputs. The upper full line is  the McMullen hound, 
while Ihe lower full line is the number a1 facela fur the trivial solution (one neuron lor 
each example). 

In the upper series of data points (squares) the m different examples were selected 
randomly. This means that this curve represents the number of hidden neurons for a 
random Boolean function. 

The lower data points (crosses) show how the number of facets depends on m 
when the examples proposed to the.algorithm are strongly correlated. In this case the 
examples are selected with the following criteria. The first ‘point’ chosen is always the 



Feed-forward neural networks: a geometrical perspective 887 

origin; then one chooses all the points with Hamming distance 1 from the origin; then 
all the points with Hamming distance 2 and so on until all the necessary m patterns 
are found. For each value of the Hamming distance the points are selected randomly 
and are different from each other: when no more points can be extracted with a certain 
Hamming distance the value of the Hamming distance is increased by one. It is clear 
that in correlated cases the convex hull algorithm is much more efficient. The periodic 
drop in the number of facets is reached when m is such that the points 'fill' all the 
avaiiabie space up io a ceriain iiamming distance: in Fact it is easy io prove that in 
this case one hyperplane plus n hypercube facets (which can be dropped) form the 
convex hull of the set. 

The straight line represents the number of hidden neurons needed by the solution 
that assigns a specific hidden neuron to each of the examples: the so-called grandmother 
neuron representation. This representation, though it always provides a solution with 
a :inear increase of the number of hidden iieiiioiis, is a tii\iia: one and does not take 
advantage of any correlation between the examples. 

Figure 3 shows the average number of facets for random Boolean function repeated 
for several nets with the number of inputs n varying from 4 to 8 t .  On the x axis there 
is the normalized coordinate m / 2 "  and the curves have been normalized for easy 
comparison. 

!t appears tha! maxima shift to !ewer va!r?es of E/?"  2nd a!% becomes narro'wer 
as n increases. A preliminary fit to the position of maxima shows that their normalized 
coordinates are proportional to n2/2".  

Frottion of exompier m / 2 "  

Figure 3. Average number of facets for random Boolean functions. 

5. Conclusions 

,,,- L -",-.-.A ,,avc lsldlciu :he piohlems of feed-f~iwsid iieiiid iietwoiks io the iheory of' 
n-dimensional convex polytopes and we have shown that the convex hull of the 
examples can provide a feed-forward net that solves the problem without uncontrolled 

t We have not been able to do these simulations for n > 8  due 10 memory limitations o f  our personal 
compuicrs. 
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generalization. Starting from this we have shown that simple perceptrons are ‘almost 
always’ inefficient when examples a re  taken in the hypercube (and  thus not in general 
position). Finally, we have put forward what we believe to he a novel algorithm to 
build feed-forward nets that, on the basis of general considerations, could be  a 
promising alternative to traditional learning algorithms. 

Preliminary results on the practical performances of the algorithm show that, in 
the case of uncorrelated patterns a n d  large input space n (the design criteria we 
followed), the algorithm could he competitive with traditional ones with the added 
bonus of geometrical clarity and tuneable generalization properties. 

M Budinich and E Milofti 

Appendix 

We propose here a solution that, by adding another hidden layer, reduces the total 
number of hidden neurons. 

The worst-case behaviour derived from McMullen’s theorem suggests a highly 
nonlinear behaviour for the growth of the number of facets (i.e. hidden neurons). Even 
if mitigated by the hypercube symmetry one can expect a polynomial law such as a m p  
(with p s  In /2] ,  a = a ( n ) )  for the (average) number of facets: this, in turn, suggests 
a way to devise a more ‘economical’ network. If one splits the set of examples into k 
subsets of approximately m l k  examples each, one  can again recover all the examples 
by ANDing for each of the resulting k convex sets and  thereafter ORing the k results. 
In this way one constructs a network with two hidden layers that still performs the 
same task as the original network a n d  has a total of approximately k + k a ( m l k ) ’  
neurons in the first and second hidden layers. By deriving with respect to k one finds 
that the minimum for the combined number of neurons in the first and  second layer 
is obtained for k = ( a ( p - l ) ) ” % .  If one  takes the asymptotic behaviour from 
McMullen’s theorem ( a = l / ( n / 2 ) ! ,  P = n / 2 )  then k = Z e ( m / n ) = 5 , 4 ( m / n ) .  
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